MUX

Timestamp Troubles

How Mux handles unreliable system clocks in virtual environments

Walker Griggs October 13, 2022

Currently at Mux on Live Studio team
Previously at Heroku on Data Team

No reason for being this bad at Chess,
for the amount that | play

walker@mux.com - walkergriggs.com

MUX

T .

Reliable timestamps when live streaming from virtual
environments are really hard

\ ,,_/

MUX

Agenda

1. Web Inputs and unexpected behaviors
2. A bit about timestamps

3. Our triage journey

4. Fixing it!

MUX

Web Inputs and unexpected behaviors
A bit about timestamps

Our triage journey

Fixing it!

> W =

MUX

Web Inputs at a glance

Web URL

Vv

¢

Chrome

XVFB

RUESIS

Vv

FFMPEG

Livestream

N
7

Process timeline

Start Pulse Start Chrome

Start XVFB Start Ffmepg

Render Page

Request page

Process timeline

Start Pulse Start Chrome

Start XVFB Start Ffmepg

Render Page &
First Meaningful Paint

Request page

Behavior #1:

Scattered audio and video for WD '

the first few seconds

VIDEO LATE AUDIO LATE

I\HlHHIIHHlH\HlHHH|H!lHHHHll|H\HI\HJSI\ILU

Behavior #2:
Audio and video sync meander
throughout the livestream

Easily fix async video with ffmpeg

Feb 17, 2021 - Lars Windolf —

1. Correcting Audio that is too slow/fast

This can be done using the -async parameter of ffmpeg which according to the documentation
“Stretches/squeezes” the audio stream to match the timestamps. The parameter takes a numeric
value for the samples per seconds to enforce.

ffmpeg -async 25 -i input.mpg <encoding options> -r 25

Try slowly increasing the -async value until audio and video matches.

2. Auto-Correcting Time-Shift
2.1 Audio is ahead

ffmpeg(1) - Linux man page

Name

ffmpeg - FFmpeg video converter

Synopsis

ffmpeg [[infile options][-i infile]]... {[outfile options] outfile}...
Description

As a general rule, options are applied to the next specified file. Therefore, order is important, and you can
have the same option on the command line multiple times. Each occurrence is then applied to the next input
or output file.

* To set the video bitrate of the output file to 64kbit/s:
ffmpeg -i input.avi -b 64k output.avi
* To force the frame rate of the output file to 24 fps:

ffmpeg -i input.avi -r 24 output.avi

projects / ffmpeg.git / blobdiff

summary | shortlog | log | commit | commitdiff | tree
raw | inline | side by side

avdevice/pulse_audio_dec: do not read undersized frames

[ffmpeg.git] / libavdevice / pulse audio dec.c

diff --git a/libavdevice/pulse audio_dec.c b/libavdevice/pulse_audio_dj

index 0454a643dda8bd2b7170db5b0288392f87b95337..3777396e£60d2e30922d52«
--- a/libavdevice/pulse_audio_dec.c
+++ b/libavdevice/pulse_audio_dec.c
@@ -48,6 +48,7 @@ typedef struct PulseData {
pa_threaded_mainloop *mainloop;
pa_context *context;

o damsawn dedamsawme

B W

Web Inputs and unexpected behaviors
A bit about timestamps

Our triage journey

Fixing it!

PTS, Presentation Timestamps
When the player should show
you the frame

DTS, Decode Timestamps
When the player should decode
the frame.

Some frames are predictive and
reference other frames.

Predictive frames change the

order they should be decoded in.

Original Scene

-

..
h \

O

y

IPB Compression

@ ®

—

2

\
\V

v

WD

Web Inputs and unexpected behaviors
A bit about timestamps

Our triage journey

Fixing it!

Non-monotonic DTS in output

Decoded timestamps are out of [flv @ 0x47b5740]

order! Non-monotonous DTS in output stream 0:1;
previous: 320, current: 3; changing to 320.

This may result in incorrect timestamps in the
Buffered samples output file.

Packet sizes are initially 64kb, [pllse! @ ax4Taca40]

but settle to 4kb DTS: Unix Timestamp,
PTS: Unix Timestzmp + 341000,
Latency: 210971,

DTS and PTS in audio samples? Frame Duration: 16368,

Structs are generic for both Read Length: 65472,
. . . Frame Size:4

audio and video. Audio samples

aren’t ‘predictive’

// Grab the wallclock
dts = av_gettime();

// Adjust for latency
dts +/-= pa_stream_get_latency(...);

// Denoise the adjusted timestamp
pts = ff_timefilter_update(...);

Non-monotonic DTS in output

Decoded timestamps are out of [flv @ 0x47b5740]

order! Non-monotonous DTS in output stream 0:1;
previous: 320, current: 3; changing to 320.

This may result in incorrect timestamps in the
Buffered samples output file.

Packet sizes are initially 16kb, [bulse @ Ox47ac840]

but settle to 4kb DTS: Unix Timestamp,
PTS: Unix Timestamp + 341000,

. . Latency: 210971,
DTS and PTS in audio samples? Frame Duration: 16368,

Structs are generic for both Read Length: 65472,
. . . Frame Size:4

audio and video. Audio samples

aren’t ‘predictive’

DTS over Frame Count
+1.6528145000e10

900+

~ 0
o o
o o

Timestamps (ms)
(@)
o
=

500

400+

0 500 1000 1500 2000 2500
Frame Count

DTS Derivative over Frame Count

0.25
T
£0.24
(V)]
Q
>
=023 Mh
3 ‘
]
©
o
E022
S L
z AT e) J
c0.21
=
Sl 50 100 150 200 250 300

Frame Count

DTS Derivative over Frame Count

=)
N
o
Ul
Ul

@

=

wn

=

>0.26 ;
© ‘

3

= |

. WMW
o

& | |

g 022 Mm {1 T . T 4.0
= 0.20 1l

0 50 100 150 200 250 300
Frame Count

o

Latency (ms)

(9]

i
u

Behavior #1:
Scattered audio and video for
the first few seconds

Behavior #2:

Audio and video sync would
meander throughout the
livestream

0.281

Timestamp derivatives (ms)

0.20+

0.261

0.241

h

50

100

150
Frame Count

200

250

Process timeline

Start Pulse Start Chrome

Start XVFB Start Ffmepg

Render Page &
First Meaningful Paint

Request page

B W

Web Inputs and unexpected behaviors
A bit about timestamps

Our triage journey

Fixing it!

What do we know?

Pulse is buffering more than we need
We don’t need to transcode those samples
in the first place.

Wall clock isn’t perfect
Even after de-noising, it still fluctuates

We know the useful decoding metrics

Target frequency, total number of samples
decoded, and starting timestamp

What did we do?

Ignore large packets
Only decode nice, round 4kb packets. Naive!

Flush the Pulse buffers
Call the Pulse API to flush the buffers
directly from device decoder.

Count samples
Computing a timestamp is as simple as
Starting Time + (Samples / Frequency)

How did we do it?

1. Record the starting timestamp
2. Count the number of samples decoded

3. Ignore samples with an DTS before that
starting timestamp

4. Use the target frequency and number of
samples to find our PTS

(Total Samples / Target Frequency) + Starting timestamp

pts = init_pts + av_rescale(
total_samples,
timebase,
sample_rate

);

What gives?

Counting samples isn’t responsive
This system won’t recover if the sync is off.

Sharks bite cables
There are a number of reasons why we
might lose audio samples. Entropy exists

System of checks and balances
Use the wall-clock to check if we’ve drifted
by more than some threshold

Are you learning, son?

Get your hands dirty!
Fill the gap between glossary and technical
specification.

Choose redundancy where it matters
You can’t trust any single systems.

Invest in glass-to-glass testing, early
If | have to listen to one more test card...

T .

Reliable timestamps when live streaming from virtual
environments are really hard

\ ,,_/

MUX

