
Timestamp Troubles
How Mux handles unreliable system clocks in virtual environments

Walker Griggs October 13, 2022

Currently at Mux on Live Studio team

Previously at Heroku on Data Team

No reason for being this bad at Chess,
for the amount that I play

walker@mux.com - walkergriggs.com

whoami

“
”

Reliable timestamps when live streaming from virtual
environments are really hard

1. Web Inputs and unexpected behaviors
2. A bit about timestamps
3. Our triage journey

1. Web Inputs and unexpected behaviors
2. A bit about timestamps
3. Our triage journey
4. Fixing it!

Agenda

1. Web Inputs and unexpected behaviors1. Web Inputs and unexpected behaviors
2. A bit about timestamps

1. Web Inputs and unexpected behaviors
2. A bit about timestamps
3. Our triage journey
4. Fixing it!

Web Inputs at a glance

Process timeline

Process timeline

Scattered audio and video for
the first few seconds

Behavior #1:

Audio and video sync meander
throughout the livestream

Behavior #2:

🙁

1. Web Inputs and unexpected behaviors
2. A bit about timestamps
3. Our triage journey
4. Fixing it!

When the player should show
you the frame

PTS, Presentation Timestamps

When the player should decode
the frame.

DTS, Decode Timestamps

Some frames are predictive and
reference other frames.

Predictive frames change the
order they should be decoded in.

1. Web Inputs and unexpected behaviors
2. A bit about timestamps
3. Our triage journey
4. Fixing it!

Decoded timestamps are out of
order!

Non-monotonic DTS in output

Packet sizes are initially 64kb,
but settle to 4kb

Buffered samples

Structs are generic for both
audio and video. Audio samples
aren’t ‘predictive’

DTS and PTS in audio samples?

[flv @ 0x47b5740]
 Non-monotonous DTS in output stream 0:1;
 previous: 320, current: 3; changing to 320.
 This may result in incorrect timestamps in the
 output file.

[pulse @ 0x47ac840]
 DTS: Unix Timestamp,
 PTS: Unix Timestamp + 341000,
 Latency: 210971,
 Frame Duration: 16368,
 Read Length: 65472,
 Frame Size:4

[pulse @ 0x47ac840]
 DTS: Unix Timestamp,
 PTS: Unix Timestamp + 341000,
 Latency: 210971,
 Frame Duration: 16368,
 Read Length: 65472,
 Frame Size:4

// Grab the wallclock
dts = av_gettime();

// Adjust for latency
dts +/-= pa_stream_get_latency(...);

// Denoise the adjusted timestamp
pts = ff_timefilter_update(...);

Decoded timestamps are out of
order!

Non-monotonic DTS in output

Packet sizes are initially 16kb,
but settle to 4kb

Buffered samples

Structs are generic for both
audio and video. Audio samples
aren’t ‘predictive’

DTS and PTS in audio samples?

[flv @ 0x47b5740]
 Non-monotonous DTS in output stream 0:1;
 previous: 320, current: 3; changing to 320.
 This may result in incorrect timestamps in the
 output file.

[pulse @ 0x47ac840]
 DTS: Unix Timestamp,
 PTS: Unix Timestamp + 341000,
 Latency: 210971,
 Frame Duration: 16368,
 Read Length: 65472,
 Frame Size:4

DTS over Frame Count

DTS Derivative over Frame Count

DTS Derivative over Frame Count

Scattered audio and video for
the first few seconds

Behavior #1:

Audio and video sync would
meander throughout the
livestream

Behavior #2:

Process timeline

1. Web Inputs and unexpected behaviors
2. A bit about timestamps
3. Our triage journey
4. Fixing it!

Target frequency, total number of samples
decoded, and starting timestamp

We know the useful decoding metrics

We don’t need to transcode those samples
in the first place.

Pulse is buffering more than we need

Even after de-noising, it still fluctuates
Wall clock isn’t perfect

What do we know?

Computing a timestamp is as simple as
Starting Time + (Samples / Frequency)

Count samples

Call the Pulse API to flush the buffers
directly from device decoder.

Flush the Pulse buffers

Only decode nice, round 4kb packets. Naive!
Ignore large packets

What did we do?

1. Record the starting timestamp

2. Count the number of samples decoded

3. Ignore samples with an DTS before that
starting timestamp

4. Use the target frequency and number of
samples to find our PTS

How did we do it?

(Total Samples / Target Frequency) + Starting timestamp

pts = init_pts + av_rescale(
 total_samples,
 timebase,
 sample_rate
);

Use the wall-clock to check if we’ve drifted
by more than some threshold

This system won’t recover if the sync is off.
Counting samples isn’t responsive

There are a number of reasons why we
might lose audio samples. Entropy exists

Sharks bite cables

System of checks and balances

What gives?

Fill the gap between glossary and technical
specification.

Get your hands dirty!

Are you learning, son?

You can’t trust any single systems.
Choose redundancy where it matters

If I have to listen to one more test card…
Invest in glass-to-glass testing, early

“
”

Reliable timestamps when live streaming from virtual
environments are really hard

